Industrial Power Monitoring System Market Report, Global Industry Analysis, Market Size, Share, Growth Trends, Regional Outlook, Competitive Strategies and Segment Forecasts 2023 - 2030

  • Published Date: Jan, 2024
  • Report ID: CR0207654
  • Format: Electronic (PDF)
  • Number of Pages: 224
  • Author(s): Joshi, Madhavi

Report Overview

The Industrial Power Monitoring System Market size was estimated at USD 3.5 billion in 2023 and is projected to reach USD 6.5 billion by 2030, exhibiting a compound annual growth rate (CAGR) of 9.50% during the forecast period (2024-2030).

Industrial Power Monitoring System Market

(Market Size)
$3.5 billion
$6.5 billion
2023
2030
Source: Citius Research
Study Period 2018 - 2030
Base Year For Estimation 2023
Forecast Data Period 2024 - 2030
CAGR (2024-2030) 9.50%
2023 Market Size USD 3.5 billion
2030 Market Size USD 6.5 billion
Key Players Schneider Electric, Siemens, Eaton, ABB, Honeywell

Market Summary

The industrial power monitoring system market is a critical segment within the broader energy management landscape, primarily serving the manufacturing and construction sectors. These systems are engineered to provide real-time visibility into electrical power consumption, quality, and distribution across industrial facilities. The core function involves the deployment of hardware sensors and intelligent software platforms that collect, analyze, and report on vast amounts of energy data. This enables plant managers, facility operators, and corporate sustainability officers to make data-driven decisions aimed at optimizing operational efficiency. The increasing complexity of industrial electrical infrastructure, coupled with the global push for energy conservation and cost reduction, is a fundamental driver for the adoption of these sophisticated monitoring solutions. Companies are increasingly viewing robust power monitoring not as an optional expense but as a necessary investment for maintaining competitive advantage, ensuring equipment health, and achieving long-term sustainability goals.

Key Highlights

A key highlight of the modern industrial power monitoring system is its deep integration with Industrial Internet of Things (IIoT) architecture. This connectivity transforms standalone meters into a networked intelligence system capable of predictive analytics and automated control. Leading solutions offer advanced features such as power quality analysis, which identifies issues like harmonics, sags, swells, and transients that can damage sensitive manufacturing equipment and lead to costly downtime. Furthermore, the shift towards cloud-based platforms is a significant trend, allowing for centralized management of multiple facilities from a single dashboard and enabling benchmarking across an entire enterprise. The ability to set customized alarms for abnormal consumption patterns and generate detailed compliance reports for environmental standards provides substantial value. These systems are becoming integral to smart factory initiatives and are essential for implementing effective energy procurement strategies and demand-side management.

Drivers, Opportunities & Restraints

The market is propelled by several powerful drivers, chief among them being the relentless pressure on industrial operators to reduce escalating energy costs and improve their bottom line. Stricter government regulations and international agreements aimed at reducing carbon footprints are mandating higher levels of energy efficiency and reporting, making power monitoring systems a compliance necessity. The rapid expansion of renewable energy integration into the grid also creates complexity in power management that these systems are designed to handle. A significant opportunity lies in the advancement of data analytics and artificial intelligence, which can unlock deeper insights for predictive maintenance and further optimization. However, the market faces restraints, including the high initial capital investment required for a comprehensive system deployment, especially for large-scale facilities. A lack of technical expertise in-house to interpret complex data and implement changes can also hinder adoption, alongside concerns regarding the cybersecurity of connected energy networks.

Concentration Insights

The competitive landscape of the industrial power monitoring system market is characterized by a mix of large, established multinational corporations and specialized technology providers. The market concentration is relatively high, with a few key players holding significant shares due to their extensive product portfolios, global sales networks, and strong brand recognition built over decades in the power and automation space. These industry giants often provide end-to-end solutions that integrate seamlessly with their other industrial equipment. However, there is a vibrant segment of smaller, agile companies that compete by offering innovative, software-centric solutions, niche applications, or more cost-effective hardware. This dynamic creates a market where competition is based not only on product features and reliability but also on the value-added services offered, such as system integration, consulting, and long-term support and maintenance contracts.

Type Insights

Industrial power monitoring systems can be broadly categorized based on their component types, primarily hardware, software, and services. The hardware segment includes a range of devices such as smart meters, sensors, current transformers, and communication gateways that form the physical layer of data acquisition. These devices vary in capability from basic metering to advanced units that measure a wide array of power quality parameters. The software segment constitutes the analytical brain of the system, comprising data acquisition software, historical databases, and sophisticated visualization dashboards that turn raw data into actionable intelligence. This segment is increasingly moving towards cloud-based subscription models. The services segment encompasses critical offerings like system design, installation, commissioning, training, and ongoing maintenance, which are essential for ensuring the system delivers its intended return on investment and remains operational over its lifecycle.

Application Insights

Within the manufacturing and construction industries, the application of power monitoring systems is diverse and critical to core operations. In manufacturing, these systems are deployed to monitor individual production lines, high-energy-consuming processes like injection molding or furnace operations, and entire facility infrastructure. The primary application is load profiling to identify waste and inefficiency, thereby enabling strategic load shedding and peak shaving to reduce demand charges. They are also indispensable for managing power quality to protect sensitive automation and control equipment from damaging electrical disturbances. In the construction sector, these systems are increasingly used on large project sites for temporary power management, ensuring efficient energy use from generators, and tracking consumption for cost allocation across different contractors and phases of the project, promoting accountability and sustainability from the ground up.

Regional Insights

The adoption and advancement of industrial power monitoring systems exhibit distinct regional patterns influenced by local industrial activity, energy policies, and economic development. North America and Europe represent mature markets characterized by a strong regulatory environment for energy efficiency, high industrial energy costs, and a high concentration of leading technology providers. These regions are often early adopters of the latest IIoT and cloud-based solutions. The Asia-Pacific region is observed as the fastest-growing market, driven by rapid industrialization, massive investments in manufacturing infrastructure, and increasing government initiatives to combat pollution and manage energy demand in countries like China and India. Latin America and the Middle East & Africa are emerging markets where growth is linked to industrial expansion, modernization of existing infrastructure, and growing awareness of the financial benefits of energy management, though adoption rates can be variable.

Company Insights

The industrial power monitoring system market features a roster of prominent players renowned for their technological expertise and global reach. Key companies dominating this space include Schneider Electric, a leader known for its EcoStruxure Power platform that offers scalable and integrated solutions. Siemens AG provides a comprehensive suite under its Siemens Xcelerator portfolio, including Sentron devices and sophisticated energy analytics software. Eaton Corporation is another major contender with its robust range of power management and power quality monitoring products. Emerson Electric Co. offers solutions through its subsidiary, Emerson Automation Solutions, focusing on reliability and operational efficiency. Other significant participants include General Electric, which provides advanced metering and grid solutions, and ABB Ltd., with its extensive capability in electrification and automation. These companies compete through continuous innovation, strategic acquisitions, and a strong focus on providing complete, value-added systems.

Recent Developments

The market is witnessing a wave of innovation and strategic movements aimed at capturing greater market share and addressing evolving customer needs. A prominent trend is the intensified focus on developing AI-powered analytics software that can move beyond monitoring to providing prescriptive recommendations for energy savings and predictive alerts for maintenance. Major players are aggressively expanding their cloud-based SaaS offerings, making advanced power monitoring more accessible to mid-sized industrial facilities. Strategic partnerships and acquisitions are common, as established hardware manufacturers seek to acquire software firms to enhance their digital capabilities and offer more integrated platforms. Furthermore, there is a growing development of solutions tailored for specific verticals within manufacturing, such as data centers or automotive plants, and an increased emphasis on enhancing the cybersecurity features embedded within these connected systems to protect critical operational data.

Report Segmentation

This market research report on the industrial power monitoring system market provides a detailed and structured analysis segmented to offer granular insights. The segmentation is typically conducted on several key axes to cater to the specific information needs of various stakeholders. The report is segmented by component, covering hardware, software, and services to analyze the adoption and growth of each element. It is further segmented by end-use industry, with a dedicated focus on manufacturing and construction, while also contextualizing other industrial sectors. A critical segmentation is by application, detailing usage in scenarios like utility metering, load forecasting, power quality management, and asset management. Geographically, the report is segmented into key regions and major countries to provide a localized view of market dynamics, trends, and growth potentials, enabling businesses to devise region-specific strategies.

FAQs

What is an industrial power monitoring system?

An industrial power monitoring system is an integrated suite of hardware and software designed to track, analyze, and manage electrical energy consumption and quality within industrial facilities. It provides real-time data and historical trends to optimize energy usage.

What are the benefits of a power monitoring system?

Key benefits include significant cost savings through identifying energy waste, reduced downtime by preventing equipment failure due to power quality issues, improved operational efficiency, compliance with energy regulations, and enhanced sustainability reporting.

What are the key components of a power monitoring system?

The main components are hardware devices like smart meters and sensors for data collection, communication networks, and software platforms for data analysis, visualization, and reporting. Services for installation and support are also a core component.

How does a power monitoring system work?

Sensors and meters installed at key points in the electrical infrastructure measure parameters like voltage, current, and power factor. This data is transmitted to a central software platform where it is analyzed and displayed on dashboards for informed decision-making.

What is the difference between energy management and power monitoring?

Power monitoring is the foundational act of measuring and collecting energy data. Energy management is the broader strategy that uses the insights from monitoring to implement policies, procedures, and technologies to reduce consumption and improve efficiency.

Which industries use power monitoring systems?

While valuable across many sectors, primary users are energy-intensive industries like manufacturing, oil & gas, metals & mining, data centers, and the construction industry for managing large-scale project sites.

Citius Research has developed a research report titled “Industrial Power Monitoring System Market Report - Global Industry Analysis, Size, Share, Growth Trends, Regional Outlook, Competitive Strategies and Segment Forecasts 2024 - 2030” delivering key insights regarding business intelligence and providing concrete business strategies to clients in the form of a detailed syndicated report. The report details out the factors such as business environment, industry trend, growth opportunities, competition, pricing, global and regional market analysis, and other market related factors.

Details included in the report for the years 2024 through 2030

• Industrial Power Monitoring System Market Potential
• Segment-wise breakup
• Compounded annual growth rate (CAGR) for the next 6 years
• Key customers and their preferences
• Market share of major players and their competitive strength
• Existing competition in the market
• Price trend analysis
• Key trend analysis
• Market entry strategies
• Market opportunity insights

The report focuses on the drivers, restraints, opportunities, and challenges in the market based on various factors geographically. Further, key players, major collaborations, merger & acquisitions along with trending innovation and business policies are reviewed in the report. The Industrial Power Monitoring System Market report is segmented on the basis of various market segments and their analysis, both in terms of value and volume, for each region for the period under consideration.

Industrial Power Monitoring System Market Segmentation

Market Segmentation

Regions Covered

• North America
• Latin America
• Europe
• MENA
• Asia Pacific
• Sub-Saharan Africa and
• Australasia

Industrial Power Monitoring System Market Analysis

The report covers below mentioned analysis, but is not limited to:

• Overview of Industrial Power Monitoring System Market
• Research Methodology
• Executive Summary
• Market Dynamics of Industrial Power Monitoring System Market
  • Driving Factors
  • Restraints
  • Opportunities
• Global Market Status and Forecast by Segment A
• Global Market Status and Forecast by Segment B
• Global Market Status and Forecast by Segment C
• Global Market Status and Forecast by Regions
• Upstream and Downstream Market Analysis of Industrial Power Monitoring System Market
• Cost and Gross Margin Analysis of Industrial Power Monitoring System Market
• Industrial Power Monitoring System Market Report - Global Industry Analysis, Size, Share, Growth Trends, Regional Outlook, Competitive Strategies and Segment Forecasts 2024 - 2030
  • Competition Landscape
  • Market Share of Major Players
• Key Recommendations

The “Industrial Power Monitoring System Market Report - Global Industry Analysis, Size, Share, Growth Trends, Regional Outlook, Competitive Strategies and Segment Forecasts 2024 - 2030” report helps the clients to take business decisions and to understand strategies of major players in the industry. The report delivers the market driven results supported by a mix of primary and secondary research. The report provides the results triangulated through authentic sources and upon conducting thorough primary interviews with the industry experts. The report includes the results on the areas where the client can focus and create point of parity and develop a competitive edge, based on real-time data results.

Industrial Power Monitoring System Market Key Stakeholders

Below are the key stakeholders for the Industrial Power Monitoring System Market:

• Manufacturers
• Distributors/Traders/Wholesalers
• Material/Component Manufacturers
• Industry Associations
• Downstream vendors

Industrial Power Monitoring System Market Report Scope

Report AttributeDetails
Base year2023
Historical data2018 – 2023
Forecast2024 - 2030
CAGR2024 - 2030
Quantitative UnitsValue (USD Million)
Report coverageRevenue Forecast, Competitive Landscape, Growth Factors, Trends and Strategies. Customized report options available on request
Segments coveredProduct type, technology, application, geography
Regions coveredNorth America, Latin America, Europe, MENA, Asia Pacific, Sub-Saharan Africa and Australasia
Countries coveredUS, UK, China, Japan, Germany, India, France, Brazil, Italy, Canada, Russia, South Korea, Australia, Spain, Mexico and others
Customization scopeAvailable on request
PricingVarious purchase options available as per your research needs. Discounts available on request

COVID-19 Impact Analysis

Like most other markets, the outbreak of COVID-19 had an unfavorable impact on the Industrial Power Monitoring System Market worldwide. This report discusses in detail the disruptions experienced by the market, the impact on flow of raw materials, manufacturing operations, production trends, consumer demand and the projected future of this market post pandemic.

The report has helped our clients:

• To describe and forecast the Industrial Power Monitoring System Market size, on the basis of various segmentations and geography, in terms of value and volume
• To measure the changing needs of customers/industries
• To provide detailed information regarding the drivers, restraints, opportunities, and challenges influencing the growth of the market
• To gain competitive intelligence and uncover new opportunities
• To analyse opportunities in the market for stakeholders by identifying high-growth segments in Industrial Power Monitoring System Market
• To strategically profile key players and provide details of the current competitive landscape
• To analyse strategic approaches adopted by players in the market, such as product launches and developments, acquisitions, collaborations, contracts, expansions, and partnerships

Report Customization

Citius Research provides free customization of reports as per your need. This report can be personalized to meet your requirements. Get in touch with our sales team, who will guarantee you to get a report that suits your necessities.

Customize This Report

Frequently Asked Questions

The Global Industrial Power Monitoring System Market size was valued at $XX billion in 2023 and is anticipated to reach $XX billion by 2030 growing at a CAGR of XX%
The global Industrial Power Monitoring System Market is expected to grow at a CAGR of XX% from 2023 to 2030.
For further details request a free sample copy of this report here.
For further details request a free sample copy of this report here.
For further details request a free sample copy of this report here.
For further details request a free sample copy of this report here.

Table of Contents

Chapter 1. Introduction
  1.1. Market Scope
  1.2. Key Segmentations
  1.3. Research Objective
Chapter 2. Research Methodology & Assumptions
Chapter 3. Executive Summary
Chapter 4. Market Background
  4.1. Dynamics
    4.1.1. Drivers
    4.1.2. Restraints
    4.1.3. Opportunity
    4.1.4. Challenges
  4.2. Key Trends in the Impacting the Market
    4.2.1. Demand & Supply
  4.3. Industry SWOT Analysis
  4.4. Porter’s Five Forces Analysis
  4.5. Value and Supply Chain Analysis
  4.6. Macro-Economic Factors
  4.7. COVID-19 Impact Analysis
    4.7.1. Global and Regional Assessment
  4.8. Profit Margin Analysis
  4.9. Trade Analysis
    4.9.1. Importing Countries
    4.9.2. Exporting Countries
  4.10. Market Entry Strategies
  4.11. Market Assessment (US$ Mn and Units)
Chapter 5. Global Industrial Power Monitoring System Market Size (US$ Mn and Units), Forecast and Trend Analysis, By Segment A
  5.1. By Segment A, 2024 - 2030
    5.1.1. Sub-Segment A
    5.1.2. Sub-Segment B
  5.2. Opportunity Analysis
Chapter 6. Global Industrial Power Monitoring System Market Size (US$ Mn and Units), Forecast and Trend Analysis, By Segment B
  6.1. By Segment B, 2024 - 2030
    6.1.1. Sub-Segment A
    6.1.2. Sub-Segment B
  6.2. Opportunity Analysis
Chapter 7. Global Industrial Power Monitoring System Market Size (US$ Mn and Units), Forecast and Trend Analysis, By Segment C
  7.1. By Segment C, 2024 - 2030
    7.1.1. Sub-Segment A
    7.1.2. Sub-Segment B
  7.2. Opportunity Analysis
Chapter 8. Global Industrial Power Monitoring System Market Size (US$ Mn and Units), Forecast and Trend Analysis, By Region
  8.1. By Region, 2024 - 2030
    8.1.1. North America
    8.1.2. Latin America
    8.1.3. Europe
    8.1.4. MENA
    8.1.5. Asia Pacific
    8.1.6. Sub-Saharan Africa
    8.1.7. Australasia
  8.2. Opportunity Analysis
Chapter 9. North America Industrial Power Monitoring System Market Forecast and Trend Analysis
  9.1. Regional Overview
  9.2. Pricing Analysis
  9.3. Key Trends in the Region
    9.3.1. Supply and Demand
  9.4. Demographic Structure
  9.5. By Segment A , 2024 - 2030, (US$ Mn and Units)
    9.5.1. Sub-Segment A
    9.5.2. Sub-Segment B
  9.6. By Segment B, 2024 - 2030, (US$ Mn and Units)
    9.6.1. Sub-Segment A
    9.6.2. Sub-Segment B
  9.7. By Segment C, 2024 - 2030, (US$ Mn and Units)
    9.7.1. Sub-Segment A
    9.7.2. Sub-Segment B
  9.8. By Country, 2024 - 2030, (US$ Mn and Units)
    9.8.1. U.S.
    9.8.2. Canada
    9.8.3. Rest of North America
  9.9. Opportunity Analysis
Chapter 10. Latin America Industrial Power Monitoring System Market Forecast and Trend Analysis
  10.1. Regional Overview
  10.2. Pricing Analysis
  10.3. Key Trends in the Region
    10.3.1. Supply and Demand
  10.4. Demographic Structure
  10.5. By Segment A , 2024 - 2030, (US$ Mn and Units)
    10.5.1. Sub-Segment A
    10.5.2. Sub-Segment B
  10.6. By Segment B, 2024 - 2030, (US$ Mn and Units)
    10.6.1. Sub-Segment A
    10.6.2. Sub-Segment B
  10.7. By Segment C, 2024 - 2030, (US$ Mn and Units)
    10.7.1. Sub-Segment A
    10.7.2. Sub-Segment B
  10.8. By Country, 2024 - 2030, (US$ Mn and Units)
    10.8.1. Brazil
    10.8.2. Argentina
    10.8.3. Rest of Latin America
  10.9. Opportunity Analysis
Chapter 11. Europe Industrial Power Monitoring System Market Forecast and Trend Analysis
  11.1. Regional Overview
  11.2. Pricing Analysis
  11.3. Key Trends in the Region
    11.3.1. Supply and Demand
  11.4. Demographic Structure
  11.5. By Segment A , 2024 - 2030, (US$ Mn and Units)
    11.5.1. Sub-Segment A
    11.5.2. Sub-Segment B
  11.6. By Segment B, 2024 - 2030, (US$ Mn and Units)
    11.6.1. Sub-Segment A
    11.6.2. Sub-Segment B
  11.7. By Segment C, 2024 - 2030, (US$ Mn and Units)
    11.7.1. Sub-Segment A
    11.7.2. Sub-Segment B
  11.8. By Country, 2024 - 2030, (US$ Mn and Units)
    11.8.1. UK
    11.8.2. Germany
    11.8.3. France
    11.8.4. Spain
    11.8.5. Rest of Europe
  11.9. Opportunity Analysis
Chapter 12. MENA Industrial Power Monitoring System Market Forecast and Trend Analysis
  12.1. Regional Overview
  12.2. Pricing Analysis
  12.3. Key Trends in the Region
    12.3.1. Supply and Demand
  12.4. Demographic Structure
  12.5. By Segment A , 2024 - 2030, (US$ Mn and Units)
    12.5.1. Sub-Segment A
    12.5.2. Sub-Segment B
  12.6. By Segment B, 2024 - 2030, (US$ Mn and Units)
    12.6.1. Sub-Segment A
    12.6.2. Sub-Segment B
  12.7. By Segment C, 2024 - 2030, (US$ Mn and Units)
    12.7.1. Sub-Segment A
    12.7.2. Sub-Segment B
  12.8. By Country, 2024 - 2030, (US$ Mn and Units)
    12.8.1. Egypt
    12.8.2. Algeria
    12.8.3. GCC
    12.8.4. Rest of MENA
  12.9. Opportunity Analysis
Chapter 13. Asia Pacific Industrial Power Monitoring System Market Forecast and Trend Analysis
  13.1. Regional Overview
  13.2. Pricing Analysis
  13.3. Key Trends in the Region
    13.3.1. Supply and Demand
  13.4. Demographic Structure
  13.5. By Segment A , 2024 - 2030, (US$ Mn and Units)
    13.5.1. Sub-Segment A
    13.5.2. Sub-Segment B
  13.6. By Segment B, 2024 - 2030, (US$ Mn and Units)
    13.6.1. Sub-Segment A
    13.6.2. Sub-Segment B
  13.7. By Segment C, 2024 - 2030, (US$ Mn and Units)
    13.7.1. Sub-Segment A
    13.7.2. Sub-Segment B
  13.8. By Country, 2024 - 2030, (US$ Mn and Units)
    13.8.1. India
    13.8.2. China
    13.8.3. Japan
    13.8.4. ASEAN
    13.8.5. Rest of Asia Pacific
  13.9. Opportunity Analysis
Chapter 14. Sub-Saharan Africa Industrial Power Monitoring System Market Forecast and Trend Analysis
  14.1. Regional Overview
  14.2. Pricing Analysis
  14.3. Key Trends in the Region
    14.3.1. Supply and Demand
  14.4. Demographic Structure
  14.5. By Segment A , 2024 - 2030, (US$ Mn and Units)
    14.5.1. Sub-Segment A
    14.5.2. Sub-Segment B
  14.6. By Segment B, 2024 - 2030, (US$ Mn and Units)
    14.6.1. Sub-Segment A
    14.6.2. Sub-Segment B
  14.7. By Segment C, 2024 - 2030, (US$ Mn and Units)
    14.7.1. Sub-Segment A
    14.7.2. Sub-Segment B
  14.8. By Country, 2024 - 2030, (US$ Mn and Units)
    14.8.1. Ethiopia
    14.8.2. Nigeria
    14.8.3. Rest of Sub-Saharan Africa
  14.9. Opportunity Analysis
Chapter 15. Australasia Industrial Power Monitoring System Market Forecast and Trend Analysis
  15.1. Regional Overview
  15.2. Pricing Analysis
  15.3. Key Trends in the Region
    15.3.1. Supply and Demand
  15.4. Demographic Structure
  15.5. By Segment A , 2024 - 2030, (US$ Mn and Units)
    15.5.1. Sub-Segment A
    15.5.2. Sub-Segment B
  15.6. By Segment B, 2024 - 2030, (US$ Mn and Units)
    15.6.1. Sub-Segment A
    15.6.2. Sub-Segment B
  15.7. By Segment C, 2024 - 2030, (US$ Mn and Units)
    15.7.1. Sub-Segment A
    15.7.2. Sub-Segment B
  15.8. By Country, 2024 - 2030, (US$ Mn and Units)
    15.8.1. Australia
    15.8.2. New Zealand
    15.8.3. Rest of Australasia
  15.9. Opportunity Analysis
Chapter 16. Competition Analysis
  16.1. Competitive Benchmarking
    16.1.1. Top Player’s Market Share
    16.1.2. Price and Product Comparison
  16.2. Company Profiles
    16.2.1. Company A
      16.2.1.1. Company Overview
      16.2.1.2. Segmental Revenue
      16.2.1.3. Product Portfolio
      16.2.1.4. Key Developments
      16.2.1.5. Strategic Outlook
    16.2.2. Company B
      16.2.2.1. Company Overview
      16.2.2.2. Segmental Revenue
      16.2.2.3. Product Portfolio
      16.2.2.4. Key Developments
      16.2.2.5. Strategic Outlook
    16.2.3. Company C
      16.2.3.1. Company Overview
      16.2.3.2. Segmental Revenue
      16.2.3.3. Product Portfolio
      16.2.3.4. Key Developments
      16.2.3.5. Strategic Outlook
    16.2.4. Company D
      16.2.4.1. Company Overview
      16.2.4.2. Segmental Revenue
      16.2.4.3. Product Portfolio
      16.2.4.4. Key Developments
      16.2.4.5. Strategic Outlook
    16.2.5. Company E
      16.2.5.1. Company Overview
      16.2.5.2. Segmental Revenue
      16.2.5.3. Product Portfolio
      16.2.5.4. Key Developments
      16.2.5.5. Strategic Outlook
    16.2.6. Company F
      16.2.6.1. Company Overview
      16.2.6.2. Segmental Revenue
      16.2.6.3. Product Portfolio
      16.2.6.4. Key Developments
      16.2.6.5. Strategic Outlook
    16.2.7. Company G
      16.2.7.1. Company Overview
      16.2.7.2. Segmental Revenue
      16.2.7.3. Product Portfolio
      16.2.7.4. Key Developments
      16.2.7.5. Strategic Outlook
    16.2.8. Company H
      16.2.8.1. Company Overview
      16.2.8.2. Segmental Revenue
      16.2.8.3. Product Portfolio
      16.2.8.4. Key Developments
      16.2.8.5. Strategic Outlook
    16.2.9. Company I
      16.2.9.1. Company Overview
      16.2.9.2. Segmental Revenue
      16.2.9.3. Product Portfolio
      16.2.9.4. Key Developments
      16.2.9.5. Strategic Outlook
    16.2.10. Company J
      16.2.10.1. Company Overview
      16.2.10.2. Segmental Revenue
      16.2.10.3. Product Portfolio
      16.2.10.4. Key Developments
      16.2.10.5. Strategic Outlook
Chapter 17. Go-To-Market Strategy

Research Methodology

We follow a robust research methodology to analyze the market in order to provide our clients with qualitative and quantitative analysis which has a very low or negligible deviance. Extensive secondary research supported by primary data collection methods help us to thoroughly understand and gauge the market. We incorporate both top-down and bottom-up approach for estimating the market. The below mentioned methods are then adopted to triangulate and validate the market.

Secondary data collection and interpretation

Secondary research includes sources such as published books, articles in journals, news media and published businesses, government and international body publications, and associations. Sources also include paid databases such as Hoovers, Thomson Reuters, Passport and others. Data derived through secondary sources is further validated through primary sources. The secondary sources also include major manufacturers mapped on the basis of revenues, product portfolios, and sales channels.

Primary data collection

Primary data collection methods include conducting interviews with industry experts and various stakeholders across the supply chain, such as raw material suppliers, manufacturers, product distributors and customers. The interviews are either telephonic or face-to-face, or even a combination of both. Prevailing trends in the industry are gathered by conducting surveys. Primary interviews also help us to understand the market drivers, restraints and opportunities, along with the challenges in the market. This method helps us in validating the data gathered through secondary sources, further triangulating the data and developing it through our statistical tools. We generally conduct interviews with -

  • CEOs, Directors, and VPs
  • Sales and Marketing Managers
  • Plant Heads and Manufacturing Department Heads
  • Product Specialists

Supply Side and Demand Side Data Collection

Supply side analysis is based on the data collected from the manufacturers and the product providers in terms of their segmental revenues. Secondary sources for this type of analysis include company annual reports and publications, associations and organisations, government publications and others.

Demand side analysis is based upon the consumer insights who are the end users of the particular product in question. They could be an individual user or an organisation. Such data is gathered through consumer surveys and focused group interviews.

Market Engineering

As a primary step, in order to develop the market numbers we follow a vigorous methodology that includes studying the parent market of the niche product and understanding the industry trends, acceptance among customers of the product, challenges, future growth, and others, followed by further breaking down the market under consideration into various segments and sub-markets. Additionally, in order to cross-validate the market, we also determine the top players in the market, along with their segmental revenues for the said market. Our secondary sources help us to validate the market share of the top players. Using both the qualitative and quantitative analysis of all the possible factors helps us determine the market numbers which are inclined towards accuracy.

Request a detailed Research Methodology for the market.

Request Customization or Sample Report

To request a sample report or for any inquiry regarding this report, please fill out the form below

Yes, I have read the Privacy Policy.

Related Reports






latest reports